Getting Started

Installation

WhittleLikelihoodInference.jl can be installed by running the following command:

] add https://github.com/JakeGrainger/WhittleLikelihoodInference.jl

The package can then be used by running

using WhittleLikelihoodInference

A basic example (univariate)

For a simple univariate example, consider a stationary OU process. The stationary OU process has parameters $\theta$ and $\sigma$ with autocovariance

\[c(\tau) = \frac{\sigma^2}{\theta}\exp\{-\theta|\tau|\}\]

and spectral density function

\[f(\omega) = \frac{\sigma^2}{\pi(\theta^2+\omega^2)}.\]

The OU process is a continuous time Gaussian process, which we are interested in fitting to a sampled process which has finite length. We can simulate such a process with length $n$ and sampling interval $\Delta$ with the following code:

σ = 2
θ = 0.5
n = 1000
Δ = 0.5
nreps = 1
ts = simulate_gp(OU(σ,θ),n,Δ,nreps)[1]
WhittleLikelihoodInference.TimeSeries{Float64, 1}([2.4532283525716148, 0.310710140980738, -0.6353185948906841, -2.0967292921396816, -0.09932113629970596, 3.8469424085764734, 3.941314442967764, 2.587388202543295, 2.9062974448223597, 1.346198890593091  …  -0.19740090802332655, 0.611584915089268, -1.5652354777080935, -1.7119898043444108, -2.5803699473209, -1.2231151156598878, -3.3581289784651616, -1.3988162008015068, 0.18276780465571485, -0.0831926047571335], 0.5)

In this case, we only wanted one series, but simulate_gp will simulate a vector of TimeSeries of length nreps. Therefore, we pull out the first index of this array as we only want one series.

Alternatively, simulation can be performed by running the following:

import WhittleLikelihoodInference: GaussianProcess
X = GaussianProcess(OU(σ,θ),n,Δ)
ts = rand(X)
WhittleLikelihoodInference.TimeSeries{Float64, 1}([2.4532283525716148, 0.310710140980738, -0.6353185948906841, -2.0967292921396816, -0.09932113629970596, 3.8469424085764734, 3.941314442967764, 2.587388202543295, 2.9062974448223597, 1.346198890593091  …  -0.19740090802332655, 0.611584915089268, -1.5652354777080935, -1.7119898043444108, -2.5803699473209, -1.2231151156598878, -3.3581289784651616, -1.3988162008015068, 0.18276780465571485, -0.0831926047571335], 0.5)

To perform Whittle likelihood inference we need to first create the objective function. This is done with the following:

whittle_objective = WhittleLikelihood(OU,ts)
Whittle likelihood for the OU model.

The resulting objective function is set up to work with Optim so we can use


julia> whittle_objective([2, 0.5])-372.04805671473946
julia> F,G,H = 0,zeros(2),zeros(2,2)(0, [0.0, 0.0], [0.0 0.0; 0.0 0.0])
julia> whittle_objective(F,G,H,[2, 0.5])-372.04805671473946
julia> G2-element Vector{Float64}: -31.387533331731234 16.992769821055777
julia> H2×2 Matrix{Float64}: 1031.39 -477.041 -477.041 993.791

We can optimise this function with Optim by using

using Optim
constraints = Optim.TwiceDifferentiableConstraints(zeros(2),fill(Inf,2))
obj = TwiceDifferentiable(Optim.only_fgh!(whittle_objective),ones(2))
res = optimize(obj, constraints, [1.5, 0.2], IPNewton())
 * Status: success

 * Candidate solution
    Final objective value:     -3.725345e+02

 * Found with
    Algorithm:     Interior Point Newton

 * Convergence measures
    |x - x'|               = 0.00e+00 ≤ 0.0e+00
    |x - x'|/|x'|          = 0.00e+00 ≤ 0.0e+00
    |f(x) - f(x')|         = 0.00e+00 ≤ 0.0e+00
    |f(x) - f(x')|/|f(x')| = 0.00e+00 ≤ 0.0e+00
    |g(x)|                 = 1.06e-06 ≰ 1.0e-08

 * Work counters
    Seconds run:   0  (vs limit Inf)
    Iterations:    31
    f(x) calls:    190
    ∇f(x) calls:   190

The full example is:

using WhittleLikelihoodInference, Optim
import WhittleLikelihoodInference: GaussianProcess
σ = 2
θ = 0.5
n = 1000
Δ = 0.5
ts = rand(GaussianProcess(OU(σ,θ),n,Δ))
whittle_objective = WhittleLikelihood(OU,ts)
constraints = Optim.TwiceDifferentiableConstraints(zeros(2),fill(Inf,2))
obj = TwiceDifferentiable(Optim.only_fgh!(whittle_objective),ones(2))
res = optimize(obj, constraints, [1.5, 0.2], IPNewton())
 * Status: success

 * Candidate solution
    Final objective value:     -3.725345e+02

 * Found with
    Algorithm:     Interior Point Newton

 * Convergence measures
    |x - x'|               = 0.00e+00 ≤ 0.0e+00
    |x - x'|/|x'|          = 0.00e+00 ≤ 0.0e+00
    |f(x) - f(x')|         = 0.00e+00 ≤ 0.0e+00
    |f(x) - f(x')|/|f(x')| = 0.00e+00 ≤ 0.0e+00
    |g(x)|                 = 1.06e-06 ≰ 1.0e-08

 * Work counters
    Seconds run:   0  (vs limit Inf)
    Iterations:    31
    f(x) calls:    190
    ∇f(x) calls:   190

A basic example (multivariate)

An analagous example for a multivariate process is a bivariate correlated OU process. Consider two independent OU processes $X_1$ and $X_2$ with the same $\sigma$ and $\theta$ parameters. Then define $Y_1 = X_1$ and $Y_2 = \rho X_1 + \sqrt{1-\rho^2}X_2$. We have that

\[\mathbb{E}[Y_1(\tau)Y_1(0)] = \mathbb{E}[X_1(\tau)X_1(0)]\]

and

\[\begin{align*} \mathbb{E}[Y_2(\tau)Y_2(0)] &= \rho^2\mathbb{E}[X_1(\tau)X_1(0)] + (1-\rho^2)\mathbb{E}[X_2(\tau)X_2(0)]\\ &= \mathbb{E}[X_1(\tau)X_1(0)] \end{align*}\]

and

\[\begin{align*} \mathbb{E}[Y_2(\tau)Y_1(0)] &= \rho\mathbb{E}[X_1(\tau)X_1(0)] \end{align*}.\]

So we have taken two OU processes and correlated them with correlation parameter $\rho$. We can fit the Whittle likelihood to a simulated example with the below code.

using WhittleLikelihoodInference, Optim
import WhittleLikelihoodInference: GaussianProcess
σ = 2
θ = 0.5
ρ = 0.7
n = 1000
Δ = 0.5
ts = rand(GaussianProcess(CorrelatedOU(σ,θ,ρ),n,Δ))
whittle_objective = WhittleLikelihood(CorrelatedOU,ts)
constraints = Optim.TwiceDifferentiableConstraints(zeros(3),[Inf,Inf,1])
obj = TwiceDifferentiable(Optim.only_fgh!(whittle_objective),ones(3))
res = optimize(obj, constraints, [1.5, 0.2, 0.5], IPNewton())
 * Status: success

 * Candidate solution
    Final objective value:     -1.420219e+03

 * Found with
    Algorithm:     Interior Point Newton

 * Convergence measures
    |x - x'|               = 0.00e+00 ≤ 0.0e+00
    |x - x'|/|x'|          = 0.00e+00 ≤ 0.0e+00
    |f(x) - f(x')|         = 0.00e+00 ≤ 0.0e+00
    |f(x) - f(x')|/|f(x')| = 0.00e+00 ≤ 0.0e+00
    |g(x)|                 = 5.18e-05 ≰ 1.0e-08

 * Work counters
    Seconds run:   0  (vs limit Inf)
    Iterations:    34
    f(x) calls:    213
    ∇f(x) calls:   213