Fitting
The fit function can be used to fit a model to a recorded series with either the Whittle or debiased Whittle likelihoods using the interior point Newton method as implemented in Optim.jl.
First load the package:
using WhittleLikelihoodInference
As a basic example, consider a univariate Gaussian process with JONSWAP spectral density function. We can simulate such a process with the following:
n = 2048
Δ = 1.0
nreps = 1
σ = 0.8
θ = 0.6
ts = simulate_gp(OU(σ,θ),n,Δ,nreps)[1]
WhittleLikelihoodInference.TimeSeries{Float64, 1}([0.8957923382764735, -0.2869095098623978, -0.5843731274042048, -1.1002520862595118, 0.14245954716497766, 1.9878330267833317, 1.5509562964594539, 0.616577021066969, 0.7720808384681657, -0.02261673450707613 … 0.7219220841823171, 0.6494898047231441, 0.7373143779725513, 0.883422919316776, -0.2419594447544285, 0.07526589891407498, 0.009206327103899757, 0.6409224395179699, 0.0933146308439764, 0.38942079856662287], 1.0)
In this case, we have simulated a Gaussian process with OU spectral density function with parameters σ = 0.8, θ = 0.6
of length 2048
sampled every 1.0
seconds. The function simulate_gp
will simulate a vector of nreps
series, which is why we recover the first of these to get one series.
We can now fit a model with the following:
x₀ = [σ,θ] .+ 0.1
res = fit(ts,model=OU,x₀=x₀)
* Status: success
* Candidate solution
Final objective value: -2.293723e+03
* Found with
Algorithm: Interior Point Newton
* Convergence measures
|x - x'| = 0.00e+00 ≤ 0.0e+00
|x - x'|/|x'| = 0.00e+00 ≤ 0.0e+00
|f(x) - f(x')| = 0.00e+00 ≤ 0.0e+00
|f(x) - f(x')|/|f(x')| = 0.00e+00 ≤ 0.0e+00
|g(x)| = 3.19e-05 ≰ 1.0e-08
* Work counters
Seconds run: 1 (vs limit Inf)
Iterations: 25
f(x) calls: 119
∇f(x) calls: 119
Here x₀
is the vector of initial parameter guesses. The estimated parameter vector can be recovered by doing:
x̂ = res.minimizer
2-element Vector{Float64}:
0.8077832308235766
0.6100036495790229
The full example is:
import Random
Random.seed!(1234)
using WhittleLikelihoodInference
n = 2048
Δ = 1.0
nreps = 1
σ = 0.8
θ = 0.6
ts = simulate_gp(OU(σ,θ),n,Δ,nreps)[1]
x₀ = [σ,θ] .+ 0.1
res = fit(ts,model=OU,x₀=x₀)
x̂ = res.minimizer
2-element Vector{Float64}:
0.8077832308235766
0.6100036495790229
For more options, see below:
WhittleLikelihoodInference.fit
— Functionfit(ts,Δ;model::Type{<:TimeSeriesModel},x₀,lowerΩcutoff,upperΩcutoff,x_lowerbounds,x_upperbounds,method,taper)
fit(timeseries::TimeSeries;model::Type{<:TimeSeriesModel},x₀,lowerΩcutoff,upperΩcutoff,x_lowerbounds,x_upperbounds,method,taper)
Fit a time series model using the IPNewton
method from Optim.jl.
Arguments
ts
:n
byD
matrix containing the timeseries (or vector ifD=1
), wheren
is the number of observations andD
is the number of series.Δ
: The sampling rate, which should be a positive real number.timeseries
: Can be provided in place ofts
andΔ
.model
: The model which will be fitted. Should be a type (not a realisation of the model) e.g. JONSWAP{k} not JONSWAP{K}(x).x₀
: The initial parameter guess.lowerΩcutoff
: The lower cutoff for the frequency range to be used in fitting. Default is0
.upperΩcutoff
: The upper cutoff for the frequency range to be used in fitting. Default isInf
.x_lowerbounds
: The lower bounds on the parameter space. Ifnothing
is provided (the default) then these are set to default values based on the model.x_upperbounds
: The upper bounds on the parameter space. Ifnothing
is provided (the default) then these are set to default values based on the model.method
: Either:Whittle
or:debiasedWhittle
.taper
: The choice of tapering to be used. This should benothing
(in which case no taper is used) ordpss_nw
wherenw
time-bandwith product (see DSP.dpss for more details).options
: Options for optimisation of typeOptim.Options
.