Docstrings

WhittleLikelihoodInference.BartlettPeriodogramType
BartlettPeriodogram(timeseries, Δ, segmentlength)

Compute the Bartlett periodogram for the provided timeseries with sampling rate Δ.

Arguments

  • timeseries: A Vector if univariate and an n by d Matrix if multivariate, where n is the number of observations and d is the dimension of the timeseries.
  • Δ: A positive real number.
  • segmentlength: the length of series used in each segment.

Computes an estimate of the spectral density function using Bartlett's method. Using the same normalisation as Periodogram.

External links

source
WhittleLikelihoodInference.DebiasedWhittleDataType
DebiasedWhittleData(model::Type{<:TimeSeriesModel{D}}, timeseries, Δ; lowerΩcutoff, upperΩcutoff, taper)

Create storage for timeseries data in a format which is useful for debiased Whittle methods.

source
WhittleLikelihoodInference.PeriodogramType
Periodogram(timeseries, Δ)

Compute the periodogram for the provided timeseries with sampling rate Δ.

Arguments

  • timeseries: A Vector if univariate and an n by d Matrix if multivariate, where n is the number of observations and d is the dimension of the timeseries.
  • Δ: A positive real number.

The periodogram is defined as

\[\boldsymbol I(ω)&=\boldsymbol J(ω) \boldsymbol J(ω)^H \quad \text{where} \quad \boldsymbol J(ω) = \sqrt{\frac{Δ}{2π n}}\sum_{t=0}^{n-1} \boldsymbol{P}_{tΔ}e^{-itΔ ω}\]

Note the periodogram is in terms of angular frequency here, and uses the normalisation $Δ/2π$. The choice of normalisation is essentially arbitrary; however, this matches our definition for the spectral density function.

source
WhittleLikelihoodInference.WhittleDataType
WhittleData(model::Type{<:TimeSeriesModel{D}}, timeseries, Δ; lowerΩcutoff, upperΩcutoff, taper)

Create storage for timeseries data in a format which is useful for Whittle methods.

source
Base.:+Method
M₁::Type{<:TimeSeriesModel{D,T}} + M₂::Type{<:TimeSeriesModel{D,T}} -> AdditiveTimeSeriesModel{M₁,M₂,D,T}
source
Base.:+Method
M₁::Type{<:TimeSeriesModel{D,T}} + M₂::Type{<:TimeSeriesModel{D,T}} -> Type{AdditiveTimeSeriesModel{M₁,M₂,D,T}}
source
Base.ndimsMethod
ndims(::TimeSeriesModel) -> Integer
ndims(::Type{<:TimeSeriesModel}) -> Integer

Return the dimension of a timeseries model.

source
WhittleLikelihoodInference.EI!Method
EI!(store, model::TimeSeriesModel)

Compute the expected periodogram and assign to appropriate place in memory (note this computes at twice the desired resolution).

source
WhittleLikelihoodInference.EIMethod
EI(model::TimeSeriesModel, n, Δ)

Compute EI at Fourier frequencies fftshift(fftfreq(n,2π/Δ)).

Note internal computation provides values at twice the resolution, this function returns at the desired resolution.

source
WhittleLikelihoodInference.acv!Method
acv!(store::Acv2EIStorage, model::TimeSeriesModel, encodedtime::LagsEI)

Compute the acv at many lags and allocate to storage when acv is known.

source
WhittleLikelihoodInference.acv!Method
acv!(store::AdditiveStorage, model::AdditiveTimeSeriesModel)

Compute the acv for an additive model.

Processes storage and model, and computes acv for each separately, then combines and stores in the leftmost storage. In other words, the sum of both autocovariances is stores in store 1. This is preferable as for some models the acv may be known.

source
WhittleLikelihoodInference.acv!Method
acv!(store::Sdf2EIStorage, model::UnknownAcvTimeSeriesModel, encodedtime::FreqAcvEst)

Approximate the acv and allocate to storage when acv is unknown.

source
WhittleLikelihoodInference.acv!Method
acv!(store::Acv2EIStorageUni, model::TimeSeriesModel{1,T}, encodedtime::LagsEI)

Compute the acv at many lags and allocate to storage when acv is known in the univariate case.

source
WhittleLikelihoodInference.acv!Method
acv!(store::Sdf2EIStorageUni, model::UnknownAcvTimeSeriesModel{1,T}, encodedtime::FreqAcvEst)

Approximate the acv and allocate to storage when acv is known in the univariate case.

source
WhittleLikelihoodInference.asdf!Method
asdf!(store::TimeSeriesModelStorage, model::TimeSeriesModel, freq::FreqAcvEst)

Compute the asdf for all frequencies and allocates to appropriate location in storage.

source
WhittleLikelihoodInference.extract_EIMethod
extract_EI(store::Sdf2EIStorage)
extract_EI(store::Acv2EIStorage)
extract_EI(store::Sdf2EIStorageUni)
extract_EI(store::Acv2EIStorageUni)

Extract the EI from general storage.

source
WhittleLikelihoodInference.extract_acvMethod
extract_acv(store::Sdf2EIStorage)
extract_acv(store::Acv2EIStorage)
extract_acv(store::Sdf2EIStorageUni)
extract_acv(store::Acv2EIStorageUni)

Extract the acv from general storage.

source
WhittleLikelihoodInference.extract_arrayMethod
extract_array(store::Sdf2EIStorage)
extract_array(store::Acv2EIStorage)
extract_array(store::Sdf2EIStorageUni)
extract_array(store::Acv2EIStorageUni)

Extract array from storage.

source
WhittleLikelihoodInference.fitMethod
fit(ts,Δ;model::Type{<:TimeSeriesModel},x₀,lowerΩcutoff,upperΩcutoff,x_lowerbounds,x_upperbounds,method,taper)
fit(timeseries::TimeSeries;model::Type{<:TimeSeriesModel},x₀,lowerΩcutoff,upperΩcutoff,x_lowerbounds,x_upperbounds,method,taper)

Fit a time series model using the IPNewton method from Optim.jl.

Arguments

  • ts: n by D matrix containing the timeseries (or vector if D=1), where n is the number of observations and D is the number of series.
  • Δ: The sampling rate, which should be a positive real number.
  • timeseries: Can be provided in place of ts and Δ.
  • model: The model which will be fitted. Should be a type (not a realisation of the model) e.g. JONSWAP{k} not JONSWAP{K}(x).
  • x₀: The initial parameter guess.
  • lowerΩcutoff: The lower cutoff for the frequency range to be used in fitting. Default is 0.
  • upperΩcutoff: The upper cutoff for the frequency range to be used in fitting. Default is Inf.
  • x_lowerbounds: The lower bounds on the parameter space. If nothing is provided (the default) then these are set to default values based on the model.
  • x_upperbounds: The upper bounds on the parameter space. If nothing is provided (the default) then these are set to default values based on the model.
  • method: Either :Whittle or :debiasedWhittle.
  • taper: The choice of tapering to be used. This should be nothing (in which case no taper is used) or dpss_nw where nw time-bandwith product (see DSP.dpss for more details).
  • options: Options for optimisation of type Optim.Options.
source
WhittleLikelihoodInference.grad_EI!Method
grad_EI!(store::TimeSeriesModelStorageGradient, model::TimeSeriesModel)

Compute the gradient of the expected periodogram and assign to appropriate place in memory (note this computes at twice the desired resolution).

source
WhittleLikelihoodInference.grad_asdf!Method
grad_asdf!(store::TimeSeriesModelStorage, model::TimeSeriesModel, freq::FreqAcvEst)
grad_asdf!(store::TimeSeriesModelStorageGradient, model::TimeSeriesModel)

Compute the gradient of the asdf for all frequencies and allocate to appropriate location in storage.

source
WhittleLikelihoodInference.hess_EI!Method
hess_EI!(store::TimeSeriesModelStorageHessian, model::TimeSeriesModel)

Compute the Hessian of the expected periodogram and assign to appropriate place in memory (note this computes at twice the desired resolution).

source
WhittleLikelihoodInference.hess_asdf!Method
hess_asdf!(store::TimeSeriesModelStorage, model::TimeSeriesModel, freq::FreqAcvEst)
hess_asdf!(store::TimeSeriesModelStorageHessian, model::TimeSeriesModel)

Compute the Hessian of the asdf for all frequencies and allocate to appropriate location in storage.

source
WhittleLikelihoodInference.nlowertriangle_dimensionMethod
nlowertriangle_dimension(::TimeSeriesModel) -> Integer
nlowertriangle_dimension(::Type{<:TimeSeriesModel}) -> Integer

Return the number of elements in the lower triangle the spectral density matrix function of a timeseries model.

source
WhittleLikelihoodInference.nlowertriangle_parameterMethod
nlowertriangle_parameter(::TimeSeriesModel) -> Integer
nlowertriangle_parameter(::Type{<:TimeSeriesModel}) -> Integer

Return the number of elements in the lower triangle of the hessian matrix for a model with given number of parameters.

source
WhittleLikelihoodInference.plotacvFunction
plotacv(model)
plotacv!(model)
plotacv(model, τ)
plotacv!(model, τ)
plotacv(model, n, Δ)
plotacv!(model, n, Δ)

Plot the aliased spectral density function of a model at lags τ. If the model does not have known acv, then the number of lags n and sampling rate Δ should be provided. In this case, the lags are -(n-1)*Δ:Δ:(n-1)*Δ. If unprovided, n = 30 and Δ = 1.

source
WhittleLikelihoodInference.plotasdfFunction
plotasdf(model)
plotasdf!(model)
plotasdf(model, Ω, Δ)
plotasdf!(model, Ω, Δ)

Plot the aliased spectral density function of a model at the frequencies Ω. By default, Ω = range(-π,π,length=200) and Δ = 1.

source
WhittleLikelihoodInference.plotcohFunction
plotcoh(model)
plotcoh!(model)
plotcoh(model, Ω)
plotcoh!(model, Ω)

Plot the coherance and group delay of a model at the frequencies Ω. If multivariate, above the diagonal is the coherance, and below is the group delay and on the diagonal is the spectral density function. By default, Ω = range(-π,π,length=200) and Δ = 1.

source
WhittleLikelihoodInference.ploteiFunction
plotei(model)
plotei!(model)
plotei(model, n, Δ)
plotei!(model, n, Δ)

Plot the aliased spectral density function of a model at the angular Fourier frequencies fftfreq(n,2π/Δ). By default, n = 1024 and Δ = 1.

source
WhittleLikelihoodInference.plotsdfFunction
plotsdf(model)
plotsdf!(model)
plotsdf(model, Ω)
plotsdf!(model, Ω)

Plot the spectral density function of a model at the frequencies Ω. By default, Ω = range(-π,π,length=200) and Δ = 1.

source
WhittleLikelihoodInference.whittle_FGH!Method
whittle_FGH!(F, G, H, store, model::TimeSeriesModel, data::GenWhittleData)

Compute the debiased Whittle likelihood and its gradient and hessian using a preallocated store.

source