Fitting
The fit function can be used to fit a model to a recorded series with either the Whittle or debiased Whittle likelihoods using the interior point Newton method as implemented in Optim.jl.
First load the package:
using OceanWaveSpectralFitting
As a basic example, consider a univariate Gaussian process with JONSWAP spectral density function. We can simulate such a process with the following:
n = 2304
Δ = 1/1.28
nreps = 1
α = 0.7
ωₚ = 1.1
γ = 3.3
r = 5.0
ts = simulate_gp(JONSWAP{1}(α,ωₚ,γ,r),n,Δ,nreps)[1]
WhittleLikelihoodInference.TimeSeries{Float64, 1}([0.33119740817539817, -0.12853479070253782, -0.47246934279789865, -0.5301457875276546, 0.05187566181562843, 0.8416111982127756, 0.6486789646392398, -0.20731813527834136, -0.591153499962582, -0.5820249337051248 … 0.05974814830183698, 0.23437032265464003, 0.2770150046120959, 0.12166956544817194, 0.1206692066364476, -0.10908959486960154, -0.337704279986251, -0.27178406279100636, -0.06519866914116158, 0.3749690671942457], 0.78125)
In this case, we have simulated a Gaussian process with JONSWAP spectral density function with parameters α = 0.7, ωₚ = 1.1, γ = 3.3, r = 5.0
of length 2304
sampled every 1/1.28
seconds. This corresponds to 30 minutes of data. The function simulate_gp
will simulate a vector of nreps
series, which is why we recover the first of these to get one series.
We can now fit a model with the following:
x₀ = [α,ωₚ,γ,r] .+ 0.1
res = fit(ts,model=JONSWAP{1},x₀=x₀)
* Status: success
* Candidate solution
Final objective value: -1.168053e+04
* Found with
Algorithm: Interior Point Newton
* Convergence measures
|x - x'| = 0.00e+00 ≤ 0.0e+00
|x - x'|/|x'| = 0.00e+00 ≤ 0.0e+00
|f(x) - f(x')| = 0.00e+00 ≤ 0.0e+00
|f(x) - f(x')|/|f(x')| = 0.00e+00 ≤ 0.0e+00
|g(x)| = 2.10e-05 ≰ 1.0e-08
* Work counters
Seconds run: 3 (vs limit Inf)
Iterations: 34
f(x) calls: 140
∇f(x) calls: 140
Here x₀
is the vector of initial parameter guesses. The estimated parameter vector can be recovered by doing:
x̂ = res.minimizer
4-element Vector{Float64}:
0.9844319608459207
1.1178179709575218
2.063265684874429
5.358748141543505
The full example is:
using OceanWaveSpectralFitting
n = 2304
Δ = 1/1.28
nreps = 1
α = 0.7
ωₚ = 1.1
γ = 3.3
r = 5.0
ts = simulate_gp(JONSWAP{1}(α,ωₚ,γ,r),n,Δ,nreps)[1]
x₀ = [α,ωₚ,γ,r] .+ 0.1
res = fit(ts,model=JONSWAP{1},x₀=x₀)
x̂ = res.minimizer
4-element Vector{Float64}:
0.9844319608459207
1.1178179709575218
2.063265684874429
5.358748141543505
For more options, see below:
OceanWaveSpectralFitting.fit
— Functionfit(ts,Δ;model::Type{<:TimeSeriesModel},x₀,lowerΩcutoff,upperΩcutoff,x_lowerbounds,x_upperbounds,method,taper)
fit(timeseries::TimeSeries;model::Type{<:TimeSeriesModel},x₀,lowerΩcutoff,upperΩcutoff,x_lowerbounds,x_upperbounds,method,taper)
Fit a wave model using IPNewton
method from Optim.jl.
Arguments
ts
:n
byD
matrix containing the timeseries (or vector ifD=1
), wheren
is the number of observations andD
is the number of series.Δ
: The sampling rate, which should be a positive real number.timeseries
: Can be provided in place ofts
andΔ
.model
: The model which will be fitted. Should be a type (not a realisation of the model) e.g. JONSWAP{k} not JONSWAP{K}(x).x₀
: The initial parameter guess.lowerΩcutoff
: The lower cutoff for the frequency range to be used in fitting. Default is0
.upperΩcutoff
: The upper cutoff for the frequency range to be used in fitting. Default isInf
.x_lowerbounds
: The lower bounds on the parameter space. Ifnothing
is provided (the default) then these are set to default values based on the model.x_upperbounds
: The upper bounds on the parameter space. Ifnothing
is provided (the default) then these are set to default values based on the model.method
: Either:Whittle
or:debiasedWhittle
.taper
: The choice of tapering to be used. This should benothing
(in which case no taper is used) ordpss_nw
wherenw
time-bandwith product (see DSP.dpss for more details).